AISLAMIENTO DE FRANKIA A PARTIR DE NODULOS DE ALNUS GLUTINOSA OBTENIDOS AXENICAMENTE

Mónica B. Rodríguez y María A. Montón de Ascornegui

Cátedra de Microbiología. Facultad de Agronomía. UBA.
Av. San Martín 4453. 1417 Buenos Aires

RESUMEN

Este trabajo describe el aislamiento de Frankia, un actinomícete fijador de nitrógeno en nódulos de plantas no leguminosas leñosas y arbustivas. Se presenta la metodología utilizada para la producción axénica de nódulos actinorrípicos en macetas con arena estéril y tubos con agar nutritivo donde crecieron, en condiciones controladas, plántulas de Alnus glutinosa (aliso europeo) inoculadas con una dilución de nódulos macerados procedentes de la misma especie forestal y recogidos en el Delta del Paraná (Argentina). Se obtuvieron nódulos representativos de Frankia en ambos casos. A partir de los nódulos obtenidos se aisló el endófito en medio Quispel modificado (QMod) sólido. Las colonias desarrollaron a los 15 días y, aunque estuvieron rodeadas de contaminantes, se observaron las características típicas del género Frankia. Estas colonias fueron replicadas a medio QMod líquido donde mostraron el crecimiento característico para este actinomícete. A pesar de la presencia de esporangios distribuidos irregularmente sobre las hifas, no se observaron esporas en los cultivos sólidos ni líquidos.

Palabras clave: Frankia, Alnus glutinosa, fijación de nitrógeno, actinomícete, nódulos actinorrípicos.

ISOLATION OF FRANKIA FROM NODULES OF ALNUS GLUTINOSA PRODUCED AXENICALLY

ABSTRACT

This paper describes the isolation of Frankia, a nitrogen-fixing actinomycete in nodules of non-leguminous woody shrubs and trees. The methodology used for the axenic production of actinorrhizal nodules in pots with sterile sand and test tubes with nutritive agar is presented. Plants of Alnus glutinosa (alder tree), inoculated with a dilution of crushed nodules belonging to the same species and taken from the Paraná river Delta (Argentina), were grown under controlled conditions. Representative nodules of Frankia were obtained in both cases. The isolation of the endophyte in solid Quispel modified (QMod) medium from those nodules was performed. At 15 days from plating, some colonies showing the typical characteristics of the genus Frankia grew on the plating, though surrounded by microbial contamination. These colonies were transferred into liquid QMod medium where they showed the characteristic growing pattern of that actinomycete. In spite of the presence of sporangia, which were irregularly distributed on the hyphae, spores were not observed neither in solid nor in liquid media.

Key words: Frankia, Alnus glutinosa, nitrogen-fixation, actinomycete, actinorhizal root-nodules.
INTRODUCCIÓN

En los últimos años se ha incrementado la preocupación del hombre por la disminución de los recursos forestales. Ello ha conllevado a que la reforestación y la producción de fibra de madera para fines industriales a bajo costo y con la mínima contaminación ambiental, sean objetivos prioritarios a nivel mundial (Rodríguez Barnuevo y Sevillano, 1987). Es por esto, que está aumentando el interés por la Fijación Biológica de Nitrógeno en especies forestales no leguminosas leñosas arbóreas y arbustivas. Estas plantas establecen simbiosis con el actinomicete Frankia, responsable de la nodulación y fijación de nitrógeno en las mismas. A través de esta asociación, el endofito recibe de la planta las sustancias carbonadas necesarias para su metabolismo y le provee a la misma, sustancias nitrogenadas sintetizadas en el nódulo (To- rey, 1978). La importancia ecológica de esta simbiosis reside en que los hospedantes (Alnus, Casuarina, Comptonia y Myrica, entre otros) son considerados pioneros o colonizadores de zonas marginales y mejoradores del suelo en regiones de pobre fertilidad (Medín y Tortosa, 1976).

En este trabajo se describen en detalle los procedimientos utilizados para el aislamiento de una cepa de Frankia a partir de nódulos de Alnus glutinosa obtenidos previamente en condiciones axénicas. Se detallan las características morfológicas y de cultivo de las colonias así obtenidas.

MATERIALES Y METODOS

La metodología aplicada se dividió en dos etapas principales:

Obtención de nódulos de Alnus glutinosa en condiciones axénicas

Se recogieron rizosferas con nódulos actinomicóticos de Alnus glutinosa (aliso europeo) provenientes de la zona del Delta del Río Paraná, donde es cultivado como mejorador del suelo (Fig. 1). Se eliminaron los restos vegetales de la superficie y luego se tomaron muestras de los 5 a 20 cm de profundidad. Las mismas fueron colocadas en bolsas plásticas y mantenidas a bajas temperaturas (4 a 10°C) hasta su procesamiento. En el laboratorio se separaron los nódulos del resto del material. Estos fueron lavados cuidadosamente con agua corriente y esterilizados superficialmente siguiendo la secuencia: 1) Cloramina T (1 % en agua destilada estéril): 5 min. 2) Lavado con agua destilada estéril: 2 min. 3) Tampón fosfato (3,4 g/L de K₂HPO₄ + 5 ml de BTA (bromotimol-azul); agregar solución de K₂HPO₄ (3,4 g/L) hasta pH 6.8: 2 min. 4) Lavados con agua destilada estéril: 2 min. El material así tratado fue macerado en un mortero y diluido con agua estéril varias veces (10⁻³, 10⁻⁴, 10⁻⁵, 10⁻⁶), constituyendo el inóculo a usar en los pasos siguientes.

Por otra parte, fueron desinfectadas semillas de Alnus glutinosa con KMnO₄ (0,1 %) durante 3 min. (Jabin et al., 1985) y lavadas varias veces con agua destilada estéril. Seguidamente, fueron puestas a germinar a 28°C en cajas de Petri y, cuando aparecieron las primeras raízillas, se las transplantó siguiendo dos metodologías:

a) Macetas: se usaron recipientes plásticos de 250 cm³ de capacidad que contenían arena lavada fina y esterilizada por tindalización en autoclave. Se depositaron 3 semillas pregerminadas en cada uno de los recipientes. Las plantas fueron regadas diariamente con agua destilada estéril y, una vez por semana, con una solución nutritiva para fijadores de nitrógeno (Ca(NO₃)₂ - 4H₂O 1 M, 1,33 ml/L; MgSO₄ - 7H₂O 1 M, 1ml/L; elementos traza, 1ml/L; FeEDTA, 1 ml/L; KH₂PO₄ 1 M, 2 ml/L; K₂SO₄ 0,5 M, 6 ml/L; CaCl₂ 1 M, 2,66 ml/L; NH₄H₂PO₄ 1 M, 0,33 ml/L; pH: 5,5 - 6,8) (Tortosa, 1988; comunicación personal). Al mes de la siembra, cada una de las plantas fue inocular con 1 ml de la dilución 10⁻² del inóculo (Dien et al., 1982). Se exceptuó de la inoculación a algunas plantas, las cuales cumplieron la función de testigos. Las macetas fueron mantenidas en condiciones controladas (28°C, 7000 lux y 14 hs de fotoperiódico) durante 3 meses más. Al cabo de ese tiempo, se cosecharon los nódulos desarrollados (Fig. 2).

b) Tubos de ensayo: la siembra de semillas pregerminadas se realizó en tubos de ensayo de 50 ml que contenían solución nutritiva de Johnson agra- nizada (8 % de agar) y esterilizada. Se colocó 1 semilla por tubo. Las plantas desarrollaron en condiciones controladas de luz y temperatura hasta el final del ensayo. Transcurrido 1 mes del transplante, cada planta fue inocular con 1 ml de la dilución 10⁻³ del inóculo. A los 3 meses de la inoculación fueron removidos los nódulos obtenidos.

El proceso de nodulación fue fácilmente observado en los tubos de ensayo, que permitieron establecer el momento óptimo para la cosecha de los nódulos (Fig. 3). Los nódulos obtenidos constituyeron el inóculo producido axénicamente, el que fue utilizado para llevar a cabo el aislamiento de Frankia. Para su conservación,
Fig. 1. Nódulos actinorréicos de *Albus glutinosus*.

Fig. 2. Nódulos actinorréicos de *Albus glutinosus* correspondientes al tratamiento T_A, a los 4 meses de la siembra de las semillas.
Aislamiento de Frankia

Los nódulos obtenidos en la etapa 1 fueron macerados en un mortero de porcelana. Con el material resultante, se confeccionó una batería de diluciones en agua estéril (10⁻¹, 10⁻², 10⁻³ y 10⁻⁴). Estas diluciones se utilizaron para inocular el medio QMod sólido (1,5 % en agar) (Diem et al., op. cit.). Para llevar a cabo el aislamiento, se sembraron 0,2 ml de cada dilución, en cajas de Petri de 9 cm de diámetro que contenían el medio de cultivo solidificado. Sobre ese material se depositó una sobre capa de 2 ml del mismo medio de cultivo que se mantuvo a 40 °C. La sobre capa tuvo la función de favorecer condiciones de microaerofilia para Frankia. Luego de la inoculación, las cajas fueron incubadas a 28-30 °C.

A los 15 días de la inoculación, se observaron los resultados bajo microscopio óptico (100X). Se detectaron colonias típicas de Frankia (Gauthier et al., 1981; Diem et al., op. cit.). Estas colonias fueron extraídas de las cajas con la ayuda de un tubo capilar, cuidando las condiciones de esterilidad. Se sembraron en tubos de ensayo que contenían 15 ml de medio QMod líquido, con el fin de observar la morfología de las colonias desarrolladas en este medio. Se incubó el material a 28 °C y a los 30 días se realizaron las observaciones.

RESULTADOS

En el ensayo para la obtención de inóculo axénico de Frankia en Abies glauconosa, la inoculación fue exitosa. Se cosecharon nódulos actinorrínicos tanto en las macetas como en los tubos de ensayo, los que presentaron la típica morfología “coralloide” (Tortosa y Medán, 1983). Al momento de la recolección, las plantas de Abies habían alcanzado aproximadamente 8 a 10 cm de altura y los nódulos un promedio de 0,2-0,4 cm de diámetro. En todos los casos, las plantas tuvieron un buen desarrollo sin manifestar stress o deficiencia de ninguna naturaleza.

Las colonias de Frankia desarrolladas en las cajas de Petri con medio QMod sólido y sobre capa, presentaron la típica morfología de “estrella de mar” (Diem et al., op. cit.), si bien rodeadas de contaminantes, principalmente bacterias. El número de colonias de Frankia por caja fue variable, en función de la dilución del inóculo empleado. Con el paso del tiempo, las colonias crecieron en diámetro. Su estructura estuvo constituida por un núcleo central compuesto por hifas, esporangios y vesículas embebidas en mucílagos. A partir de ese núcleo, se observaron hifas creciendo radialmente con unos pocos esporangios y vesículas.

En el medio QMod líquido, se observó a los 30 días una buena cantidad de tubos de ensayo con turbidez a causa de la presencia de contaminantes. En el resto de los tubos, el medio se encontraba translúcido, sin turbidez. En el fondo de los tubos se detectó la acumulación de un material blanquecino constituido por las estructuras de Frankia. Este material fue observado al microscopio óptico (100X) (Fig. 4). El micelio estuvo compuesto por hifas muy tabicadas y delgadas.
sobre las cuales se observaron estructuras de forma globo distribuidas irregularmente. Se supone que podría tratarse de esporangios, a pesar de no haberse detectado la presencia de esporas.

DISCUSION

En la elección de la metodología aplicada para realizar el aislamiento de *Frankia*, se partió de nódulos obtenidos axémicamente para evitar al máximo la interferencia de contaminantes en la experiencia. Este objetivo fue logrado, ya que se comprobó que el material aislado puede conservarse en tubos de ensayo con medio QMod líquido a bajas temperaturas, sin contaminación alguna. Cabe destacar la practicidad de la metodología de obtención de módulo axéxico con macetas y tubos, ya que es posible observar el desarrollo gradual de la nodulación en los tubos y, por lo tanto, detectar el momento en que los nódulos están listos para ser cosechados de las macetas, sin necesidad de descalzar las plantas. El ritmo de crecimiento de las plantas en ambas metodologías fue similar, ya que todas se desarrollaron simultáneamente bajo condiciones semejantes. El sistema de cultivo de las plantas en macetas con arena fue considerado más adecuado y práctico que el de hidroponía, a causa de que no se necesitan cambios frecuentes de la solución nutritiva y las condiciones de crecimiento son semejantes a las naturales.

El agregado de un 8 % de agar a la solución nutritiva de Johnson, la convirtió en un medio de cultivo ideal para el crecimiento y desarrollo vigoroso de *Alnus glutinosa* que presentó una nodulación adecuada.

En cuanto al aislamiento del endófito, se confirmaron las características que menciona la bibliografía para este actinomícete, tanto en medio sólido como líquido. En este caso no se observó pigmentación de las colonias. La presencia de esporangios indicaría la existencia de esporas, aunque éstas no se hayan detectado, tal vez por el estado fitológico del actinomícete en el momento de realizarse las observaciones. No obstante, las características morfológicas y de cultivo descriptas en este trabajo sugieren que el actinomícete aislado pertenecería al género *Frankia*.

CONCLUSIONES

El aislamiento de *Frankia* fue realizado a partir de nódulos recogidos en condiciones naturales de una zona del Delta del Paraná (Argentina), estudio aún no registrado en la bibliografía del país. Se espera que en los estudios sobre técnicas de aislamiento se logren avances importantes, ya que aún se presentan dificultades como la aparición...
ción de contaminantes junto a las colonias de *Frankia*. El perfeccionamiento de las metodologías de aislamiento y cultivo "in vitro" traerán como consecuencia progresos en el estudio de las características morfofisiológicas del actinomicete, que sin duda aportarán datos para una mejor comprensión de esta simbiosis actinorríctica fijadora de nitrógeno.

AGRADECIMIENTOS

A la Cátedra de Botánica (Facultad de Agronomía - UBA) por haber atendido consultas gentilmente en varias oportunidades. Al personal del IFONA (Paraná Misiones) por haber cedido el material que posibilitó la realización de este trabajo. Al Sr. Esteban Massuel por su colaboración en las experiencias.

REFERENCIAS

