PROPIEDADES FÍSICAS, MINERALOGICAS Y MICROMORFOLOGICAS
DE SUELOS CON CARACTERISTICAS VERTICAS DEL PARTIDO DE LA PLATA
(PROVINCIA DE BUENOS AIRES)

Perla A. Imbellone y Jorge E. Giménez

Instituto de Geomorfología y Suelos, Facultad de Ciencias Naturales y Museo. UNLP
Calle 3 Nº 584. 1900 La Plata

RESUMEN

Se realiza una descripción interpretativa de las propiedades que intervienen en el proceso de contracción-expansión de dos suelos con características véticas, los cuales tienen amplia difusión en el NE de la provincia de Buenos Aires. Los suelos estudiados son un Albacault vético (imperfectamente drenado) y un Cromudert ácido (pobramente drenado), ambos de la familia muy fina, illítica, térmica. Los pedones se ubican en las posiciones extremas de una micromorfeceuencia, en un ambiente plano con microrelieve de la cuenca del río Sumborombón, donde alternan microlomosas y microdepresiones sinuosas interconectadas. Se evalúan las propiedades a través del examen morfológico y los análisis: granulométrico, mineralógico de arcillas, micromorfológico y de extensibilidad lineal. El análisis micromorfológico del Albacault revela en los horizontes iluviales fábrica plasmática porfiroesquelética y abundantes dominios estratificados de plasma. Las evidencias de esfuerzo y corte del material se manifiestan a través de vacíos planares y separaciones plasmáticas. Los arcillano de iluvación son escasos en el horizonte Bt pues los movimientos véticos afectan su conservación; sin embargo, alcanzarían el mínimo de 1 vrequerido para horizontes argílicos. En ambos perfiles predominía la illita sobre los minerales expandibles, particularmente en los horizontes iluviales. La expresión de los rasgos véticos depende del contenido absoluto de arcillas expandibles y de la clase de drenaje. Así, a pesar de que el COLE y la extensibilidad lineal potencial son mayores en el Cromudert, este horizonte no presenta desarrollo de cutanes de tensión que en el Albacault debido a que la alternancia de humectación y sequedad se encuentra atenuada por permanecer más tiempo saturado con agua.

Palabras clave: rasgos véticos, Vertisoles, subgrupos véticos, micromorfología, mineralogía de arcillas, coeficiente de extensibilidad lineal.

PHYSICAL, MINERALOGICAL AND MICROMORPHOLOGICAL PROPERTIES OF SOILS WITH VERTIC CHARACTERISTICS (LA PLATA DEPARTMENT, BUENOS AIRES PROVINCE)

ABSTRACT

An interpretative description of the properties affecting the shrink-swell process of soils with vertic characteristics is discussed. The soils have widespread occurrence in northeastern Buenos Aires province. The studied soils are an imperfectly drained vertic Albicpseudosol and a poorly drained aquatic Chromudert, both of the very fine, illitic, thermic family. The

Ciencia del Suelo - Vol. 8 No. 2 - 1990
pedones are located in the extreme positions of a microtopocosequence in a level area with microrelief including subcircular mounds and irregular, interconnected depressions. The micromorphological analysis of the Albaquif shows perimorphic loci and abundant plastic striated domains in the illuvial horizons. The evidences of stress and shear are revealed by planar voids and planar separations. Argillans are scarce in the Bt horizons because the vertical movements have disrupted them; however, the requirement of 1% oriented clay of the argillic horizon would be met. Illite is dominant almost in all cases in both profiles over the expandable minerals, particularly in the eluvial horizons. The distinctiveness of the vertic features is dependent on the absolute contents of expandable clay and the drainage class. Thus, despite the COLE and the potential linear extensibility are higher in the Chromudert, the dickites are less prominent than in the Albaquif because the changes of moisture contents are less pronounced.

Key words: vertisolic features, Vertisol, vertic subgroups, micromorphy, clay mineralogy, COLE.

INTRODUCCIÓN

En la Argentina los suelos con características vertícas, ya sean Vertisoles o subgrupos vertícos, ocupan una superficie de aproximadamente 60.000 km² (Duda, 1967). Presentan amplia difusión en la provincia de Entre Ríos, donde han sido más estudiados (Jongerius y Keenán, 1964; INTA-Provincia de Entre Ríos, 1980; Stephan et al., 1983; Vesco, 1985; De Petre, 1988). También se han descrito en las provincias de Buenos Aires, Corrientes, Chaco, Chubut, Formosa, Neuquén, Río Negro y Santa Fe.

En la provincia de Buenos Aires los Vertisoles cubren aproximadamente 7.000 km² y suman do los subgrupos vertícos, alcanzan unos 10.000 km² (INTA, 1989). El área principal de difusión es el NE, donde existen aportes de Scopita (1978) y Cumilón (1988). En los partidos de Magdalena, Brandsen, La Plata, Berisso y Esmérides se desarrollan sobre sedimentos continentales lóseicos en interfluvios planos de los ríos de la Plata y Samborombón y sobre sedimentos marinos en ambientes costeros.

El conocimiento de estos suelos reviste importancia tanto desde el punto de vista genético como aplicado ya que, a causa de sus características físicas, plantean problemas para el manejo agrícola y usos urbanos. Asimismo, las mediciones de extensibilidad lineal junto a la velocidad de la micromorfología, permiten predecir el comportamiento del suelo resultante de su interacción con el clima (Holzhey et al., 1973).

El objeto del presente trabajo es realizar una descripción interpretativa de las propiedades que interviene en el proceso de contracción-expansión de suelos con características vertícas formados a partir de sedimentos lústicos continentales.

MATERIALES Y MÉTODOS

Se estudió un par de pedones ubicados en el partido de La Plata, sobre el acceso a la localidad de Oliden, a 7 km de la Ruta Provincial 36 (coorde

des: 35° 09' 25"S y 57° 57' 55"O). Los suelos se sitúan en las posiciones extremas de una microtopocosequence en un área con microrelieve que presenta una sucesión de micromorfológicas subcirculars de 4,8 m de diámetro separadas entre sí por depresiones sinuosas interconectadas, con desniveles de 0,15-0,25 m entre ambas posiciones. Este ambiente es común en los interfluvios planos de la cuenca del río Samborombón (partidos de La Plata, Magdalena y Brandsen) y se observan en los aérovideos con un patrón reticulado en el que las microdeformaciones presentan tomos oscuros y las micromorfológicas tonos claros.

Los suelos estudiados son: un Albaquif vertíco, situado en la microloma (imperfectamente drenado), y un Chromudert ácido, situado en la microdepresión (profundamente drenado), ambos pertenecientes a la familia muy fina, ilíctica, térmica.

El análisis mineralógico se realizó por difracción de rayos X y la semicuantificación de las especies mineralógicas por el método de Biscaye (1965). El estudio micromorfológico en muestras no disturbadas mediante microscopía óptica y electrónica de barrido. El coeficiente de extensibilidad lineal (COLE) se determinó en muestras disturbadas midiendo la diferencia de longitud en dos estados de humedad: 33 kPa y seco a 15° C. Se están experimentando la determinación de este parámetro en agregados mediante el uso de reales sintéticas de industria nacional (Giménez e Imbollone, en preparación).

RESULTADOS Y DISCUSION

El Albaquif presenta marcadas diferencias morfológicas entre los horizontes eluviales e illuviales. En los primeros no se observan rasgos morfológicos de verticización, en cambio en los segundos las superficies de deslizamiento son prominentes y abundantes. Se disponen oblicuamente en los horizontes Bt y BCk formando agregados cueniformes gruesos y fuertes. Superficies de deslizamiento definidas y/o planes de tendencia a la liberación de esquinas se observan rompiendo los
agregados hasta tamaños muy pequeños. También se observan en los horizontes Bt inclusiones de material de horizontes suprayacentes, en posición vertical y oblicua, que revelan la existencia de grietas producidas durante el período de máximo déficit hídrico, en verano. Los rasgos mencionados se vinculan estrechamente con el contenido y tipo de arcilla presente en el material del suelo (Tabla 1). Así, en los horizontes eluviales el promedio ponderado de arcilla total es menor que la mitad existente en los horizontes B y el contenido absoluto de arcillas expansibles no supera el 10%. A pesar de que la presencia de concreciones y motesados de Fe-Mn señalan la alternancia marcada de periodos de desecación y saturación con agua, este sector del perfil no posee propiedades suficientemente dinámicas como para generar rasgos véricos.

Tabla 1. Características físicas, morfológicas y mineralógicas de los suelos estudiados.

<table>
<thead>
<tr>
<th>Horizonte</th>
<th>Profundidad arcilla (cm)</th>
<th>Mineralogía estimada de arcillas (%I)</th>
<th>COLE</th>
<th>Extens. lineal pot. (cm)*</th>
<th>Cutantes de tensión</th>
<th>Fábrica plástica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I E C Respecto fracción (5 μm)</td>
<td>I E C Respecto fracción (2 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albacuílf vérico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0-23</td>
<td>25,8 75 25 vest. 19 6</td>
<td>I E C</td>
<td>0.02 0.46</td>
<td>ausentes</td>
<td>alisérica</td>
</tr>
<tr>
<td>E</td>
<td>23-31</td>
<td>17,2 70 30 vest. 12 5</td>
<td>I E C</td>
<td>0.01 0.08</td>
<td>ausentes</td>
<td>alisérica</td>
</tr>
<tr>
<td>EB</td>
<td>31-38</td>
<td>30,1 75 25 vest. 23 7</td>
<td>I E C</td>
<td>0.06 0.42</td>
<td>ausentes</td>
<td>imisólica</td>
</tr>
<tr>
<td>Bts1</td>
<td>38-76</td>
<td>63,0 60 40 vest. 23 2</td>
<td>I E C</td>
<td>0.15 5.70</td>
<td>abundantes</td>
<td>ma-vo-omnisólica</td>
</tr>
<tr>
<td>Bts2</td>
<td>76-125</td>
<td>62,4 50 50 vest. 31 31</td>
<td>I E C</td>
<td>0.16 3.84</td>
<td>abundantes</td>
<td>ma-vo-omnisónica</td>
</tr>
<tr>
<td>BCKs</td>
<td>125-148+</td>
<td>30,7 55 45 vest. 18 23</td>
<td>I E C</td>
<td>0.14 14.87</td>
<td>comunes</td>
<td>nd</td>
</tr>
<tr>
<td>Cromondert ásico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0-20</td>
<td>37,8 65 35 vest. 25 13</td>
<td>I E C</td>
<td>0.06 1.14</td>
<td>ausentes</td>
<td>argil-alisérica</td>
</tr>
<tr>
<td>Bts1</td>
<td>20-50</td>
<td>30,6 60 40 vest. 30 20</td>
<td>I E C</td>
<td>0.15 4.41</td>
<td>ausentes</td>
<td>masérica</td>
</tr>
<tr>
<td>Bts2</td>
<td>50-77</td>
<td>57,7 60 40 vest. 55 23</td>
<td>I E C</td>
<td>0.22 5.89</td>
<td>comunes</td>
<td>ma-vo-omnisólica</td>
</tr>
<tr>
<td>Bkks</td>
<td>77-93</td>
<td>51,9 65 35 vest. 34 18</td>
<td>I E C</td>
<td>0.18 2.86</td>
<td>abundantes</td>
<td>ma-vo-omnisónica</td>
</tr>
<tr>
<td>BC1</td>
<td>93-153</td>
<td>35,2 55 45 vest. 19 16</td>
<td>I E C</td>
<td>0.08 0.57</td>
<td>comunes</td>
<td>argil-alisérica</td>
</tr>
<tr>
<td>BC2</td>
<td>153-200</td>
<td>29,5 45 55 vest. 14 16</td>
<td>I E C</td>
<td>0.06 14.87</td>
<td>ausentes</td>
<td>argil-alisérica</td>
</tr>
<tr>
<td>C</td>
<td>200-325+</td>
<td>27,7 45 55 vest. 12 15</td>
<td>I E C</td>
<td>0.05 14.87</td>
<td>ausentes</td>
<td>argil-alisérica</td>
</tr>
</tbody>
</table>

* Incluye los 100 cm superficiales

I: Illita; E: Expandibles (concretas + interconcretadas); C: Caolinita

El Cromondert posee alto tenor absoluto de minerales expandibles hasta la base de los horizontes Bt, que le confiere alta capacidad de expansión-contracción y elevado COLE. Sin embargo, sólo en la parte inferior del horizonte B las superficies de deslizamiento llegan a ser abundantes. Esto se debería a que la superficie del suelo permanece anegada durante periodos prolongados por encontrarse en posiciones depresivas del paisaje donde los contrastes de humedades a largo del año son menores que en el suelo ubicado en la microloma. En los horizontes BC y C disminuye el contenido de arcilla total y absoluto de expandibles, y consecuentemente la capacidad de expansión-contracción.

La micromorfología es usada en este trabajo como herramienta para mostrar los cambios que se producen en el material del suelo por efecto de los elevados tenores de arcilla y las variaciones en el contenido de humedad. Los rasgos micromorfológicos son contrastantes en la porción superior e inferior del Albacuílf. En la primera hay significativa predominancia de proporciones relativas de esqueleto sobre planta, porosidad dominada por venecillas y escasos rasgos de reorganización plasmática. En los horizontes eluviales se observa fábrica plástica porfloresquítica e intenso recolectamiento plasmático subcutáneo a largo de vacíos planares tanto abiertos como cerrados (Fig. 1a).

Además, abundan dominios estrados del plasma, no relacionados a vacíos, dentro de la matriz de los agregados. Estas separaciones plasmáticas anchas y continuas originan según Jim (1986) la denominada "protoestructura". Las evidencias de esfero y corte del material expresadas a microescala, se manifiestan claramente a través de los vacíos planares y las separaciones del plasma. Estas últimas aparecen como paquetes de arcilla bi-refringente orientada en la masa o a veces estratificada a lo largo de superficies de deslizamiento.
(Fig. 1b y 1c). Es posible observar a grandes aumentos la disposición típica de los minerales esféricos (Fig. 1d).

El análisis micromorfológico revela que los silicatos son escasos en los horizontes B, aunque no observar macroscópica parecería indicar lo contrario, habría que tener en cuenta que en los suelos como los estudios suelo confundirse las evidencias de plasmación con las de vertisolización. Aunque concentraciones de plasmación relacionadas a superficies son raras en suelos con elevados tenores de arcilla, el proceso de iluminación no debe descartarse, pero sus evidencias son difíciles de conservar cuando el suelo carece de estabilidad ante las variaciones de humedad (Scoppa, op. cit.). Los arcillas descriptos en Vertisoles y Subgrupos Vérticos se restringen a los horizontes más profundos del suelo (Nettleton et al., 1969; Imbellone, 1980; Nettleton, 1985). No obstante, los horizontes B del perfil poseen 1% de arcillas orientadas.

La Fig. 2 muestra que en ambos suelos la minerología de la fracción arcilla es semejante cualitativamente. Presentan una composición simple: ilílica, esmectítica, caolínica, con predominancia de ilíita y ligeramente incremento de esmectitas en la base de los perfiles. La caolinita está presente en proporciones no significativas. La ilíita muestra un patrón difracográfico poco variable, con reflexiones nítidas y definidas, con moderadamente reducida cristalización. Algunas reflexiones presentan picos anchos, amplitudos y en ocasiones con el pico principal bifurcado. Los minerales expandidos no presentan reflexiones definidas en la zona distintiva, sólo un área de reflexiones definida en la zona ilílica. Las esmectitas presentan reflexiones que van de las delimitaciones en los horizontes ilílicos pero su grado de cristalización es escaso.

Los horizontes Bt de ambos perfiles poseen los contenidos absolutos más elevados de minerales expandibles en concordancia con los valores más altos de COLE. En esa porción del perfil, los valores superan en promedio el 20% de esmectitas, valor considerado por Bullock y Thompson (1985), como mínimo necesario para conferir al suelo rasgos vérticos.

El coeficiente de extensibilidad lineal es un parámetro que permite predecir la magnitud del proceso de expansión-constricción del suelo y expresar su propiedad de cambiar el volumen. Para establecer el comportamiento del suelo es necesario vincular la dinámica de esa propiedad intrínseca con las variaciones ambientales, más precisamente con el régimen de humedad del suelo. Así se ha establecido que los Subgrupos Vérticos...
Fig. 1. Aspectos microscópicos de las horizontes B del Albarcial vertical.

Ciencia del Suelo - Vol. 8 No 2 - 1990
de suelos bajo régimen údico y ácico deben poser COLE mayor de 0,09 dentro de los primeros 50 cm (Soil Survey Staff, 1975). Se observa en la Tabla 1 que los valores de COLE se relacionan directamente con el contenido total de arcilla y el contenido absoluto de esquistoas, y en ambos perfiles es menor de 0,06 en los horizontes eluviales y mayor de 0,140 en los horizontes B. Además la ELP es mayor de 6 en los 100 cm superficiales. Es de señalar que el Crucrodert presenta los mayores valores de COLE y ELP, pero las evidencias macroscópicas del proceso de expansión-contracción son menos manifiestas debido a que posee drenaje interno más defectuoso que el Albaulf y por tanto el estado de humedad es más constante.

Por otra parte, se considera que los movimientos verticales han producido pedoturbación, definida ésta como la mezcla de los horizontes superficiales y subsuperficiales. En el Albaulf existen grietas rellenadas con material del horizonte A, pero este proceso es sumamente lento, al punto que Yaloik y Kalmir (1978), consideran que sólo 0,05 a 0,1 % del material superficial cae dentro de las grietas de un Vertisol. Tampoco se observan anomalías en las funciones profundidad de componentes tales como carbono orgánico y nitrógeno total. En este sentido, Widling y Tesnier (1988) sostienen que en Vertisoles la pedoturbación no es suficientemente rápida como para impedir la translocación a largo plazo Por las razones señaladas es posible suponer que en los perfiles estudiados, los movimientos del material del suelo se producen a lo largo del diseño de planos de corte, cuyo deslizamiento se ha evidenciado a macro y micro escala.

El COLE y la ELP constituyen parámetros de aplicación en usos agronómicos tanto como ingenieriles. Por ello, se recomienda su inclusión en las cartas de suelos, principalmente cuando existan rasgos visibles de expansión-contracción en el perfil del suelo o el mismo posea, al menor para la zona estudiada, más de 30 % de arcilla total dentro del metro superficial del suelo.

Es de señalar que en la microtoposuecivencia estudiada, representativa del área, los horizontes E se encuentran en las formas en contraposición al esquema conceptual de su génesis. Más estudios son necesarios para establecer: a) la vinculación de los horizontes E con procesos pedogenéticos antiguos y/o fenómenos de erosión-sedimentación actual; b) la génesis general del microrelieve.

CONCLUSIONES

La presencia de rasgos producidos por esfuerzos, ya sea como reordenamiento del plasma en tono a vacíos planares, o dentro de la matriz de los agregados, depende del contenido absoluto de minerales de arcilla expandibles, es decir respecto a la masa total del suelo (fracción < 2 mm). En cambio, los tenores relativos de los minerales de arcillas (respecto a la fracción inferior a 2 μm) no permitieron discernir claramente el comportamiento contrastante entre los sectores eluviales e illuviales del Vertisol y el Alfisol. Los tenores absolutos de minerales expandibles superan levemente el 10 % en los horizontes eluviales, pero a partir de los horizontes Bt se produce un marcado incremento de la fracción arcilla total y los expandibles alcanzan tenores entre 20 y 30 %.

El COLE y la ELP han reflejado las variaciones de la composición granulométrica y mineralógica, pero no siempre se correlaciona con la abundancia de superficies de deslizamiento, debiendo-se considerar también las variaciones de humedad del suelo a lo largo del año.

Los movimientos verticales de los suelos no habrían producido mezcla o inversión de los materiales que se evidencian a través de anomalías en las funciones profundidad de parámetros tales como el carbono orgánico.

AGRADECIMIENTOS

A los Lic. Mario da Silva y Jorge Maggi por su colaboración en tareas analíticas.

REFERENCIAS

Ciencia del Suelo · Vol. 8 No 2 · 1990